
Computational Materials Science 2014, 84(327-338)

Microstructure evolution during dynamic discontinuous
recrystallization in particle-containing Cu
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Abstract

Control of the grain size in a material is vital in many engineering applications. Evolving through

recrystallization, the grain size is strongly influenced by the presence of impurity particles. These

particles exert drag forces on migrating grain boundaries and prevent grain boundary motion

by pinning of the boundaries. Taking copper as example material, the present work establishes

a novel simulation model where dynamic discontinuous recrystallization is influenced by parti-

cle drag. The recrystallization kinetics are established on a microlevel and the simulations are

performed using a 3D cellular automaton algorithm with probabilistic cell state switches. By

this approach, computational efficiency is combined with high temporal and spatial resolution

of the microstructure evolution. The simulated microstructure changes are in good agreement

with experimental findings and the recrystallization kinetics are shown to comply with classical

Kolmogorov/Johnson/Mehl/Avrami (KJMA) theory. In addition, through homogenization, the

macroscopic flow stress behavior is studied and is also shown to exhibit the expected transition

from single-peak stable flow into serrated multiple-peak flow as the processing temperature is in-

creased. Influence of changed initial grain sizes is studied and, in compliance with experimental

data, an increased initial grain size stabilizes the flow stress behavior whereas the opposite trend

is found for reduced initial grain sizes. Introducing impurity particles in the simulations, the

progression of recrystallization is retarded and optimum values of the particle dispersion level are

identified at different temperatures, allowing minimization of the recrystallized grain size during

thermomechanical processing of the material.

Keywords: Dynamic recrystallization, Cellular automata, Grain boundary migration, Copper,

Grain growth, Impurities

1 Introduction

The grain size of metallic materials has become an increasingly important parameter since it

influences not only important material properties such as ductility and strength but also fatigue

and wear properties, electrical properties and resistance to chemical attack. Further, in product

miniaturization related to MEMS and biomedical devices, a close control of the grain size is

required as the size of the objects is scaled down to the microlevel.
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Driven by a lowering of the Gibbs energy in the material, recrystallization acts as the main

mechanism for transforming the grain microstructure in metallic materials. The recrystallization

may occur as a relatively slow and temperature-driven static process or it may proceed, driven by

deformation, through dynamic recrystallization. The latter can be either a continuous or a discon-

tinuous process. Continuous recrystallization works by dislocation cell formation and growth of

subgrains whereas discontinuous recrystallization proceeds by nucleation and subsequent growth

of new grains at high-energy sites in the microstructure, predominantly along grain boundaries.

Whether the dynamic recrystallization proceeds as a continuous or a discontinuous process is

largely dictated by the level of stacking-fault energy in the material. In high stacking-fault materi-

als, such as aluminum, dynamic recovery is rapid in favor of continuous dynamic recrystallization.

In contrast, in low stacking-fault materials such as copper, dynamic recovery is less influential,

making discontinuous dynamic recrystallization the dominant recrystallization mechanism.

Materials undergoing recrystallization are characterized by oscillatory flow stress behavior.

The tendency for flow stress serrations increases as the processing temperature is increased or as

the strain rate is decreased, changing the behavior from single-peak flow into multiple peak flow

[1, 2, 3, 4]. This is often attributed to the competing processes of work hardening and softening

caused by recrystallization. At lower temperatures or under higher strain rates, several cycles of

recrystallization may occur in parallel, damping out the flow stress oscillations. In contrast, at

higher temperatures and lower strain rates, each cycle of recrystallization is more or less allowed

to finish before the next one sets in, resulting in oscillatory flow.

Recrystallization can to a large extent be controlled by a careful setting of processing parame-

ters such as the temperature and the rate of deformation. In addition, the presence of impurities

and second-phase particles strongly influences the appearance and evolution of the material mi-

crostructure during recrystallization. This latter influence is, however, twofold since particles on

one hand may restrict grain boundary mobility through Zener pinning while, on the other hand,

the recrystallization process may be facilitated by particle stimulated nucleation (PSN) at the

inclusions. Such nucleation may then occur also within the grain interiors and not exclusively

along grain boundaries. This puts the need for solid understanding of the influence of impurities

in the material during processing and also for the availability of proper simulation tools.

A theoretical treatment of recrystallization influenced by both Zener pinning and PSN is given

in [4, 5, 6]. Recrystallization processes have also been studied through simulation previously using

e.g. continuum mechanical models, Monte Carlo Potts, cellular automata algorithms and phase

field models. Especially Monte Carlo Potts models have been frequently employed in recrystal-

lization studies since the pioneering work in [7, 8, 9, 10] and also in [11].

The present paper contributes by formulating a cellular automaton model of dynamic dis-

continuous recrystallization (DDRX) in copper, also considering Zener pinning. To the author’s

knowledge, such 3D simulations of thermomechanical processing has not been previously studied

in the literature.

Cellular automata have become increasingly used in computational materials science. Appli-

cations vary from studies of phase transformation, recrystallization and solid state precipitation

to growth of spherulites in polymers and dendrite growth during solidification of melts [12, 13].

Cellular automata as a tool for recrystallization modeling was introduced in [14] and cellular au-

tomata models of DDRX are established in [15, 16, 17, 18]. Cellular automaton simulation of static

recrystallization considering Zener pinning is presented in [19] and PSN is considered in [20]. In

the present paper, a 3D cellular automaton model with probabilistic cell state switching rules is

used. This provides excellent computational efficiency combined with high spatial and temporal
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resolution of the microstructure evolution. Use of probabilistic cell state switches was introduced

in [21, 22] and allows a physically justified representation of grain boundary kinetics in a cellular

automaton setting, e.g. in terms of a physical time scale. The probabilistic cellular automaton is

more related to Monte Carlo Potts models than purely deterministic cellular automata. However,

the central concept of the Q-state Potts model, which is a generalization of the two-state Ising

model, is energy minimization based on a random sampling of a fixed number of lattice site states.

In a probabilistic cellular automaton, the probability is introduced to scale interface velocities

based on locally computed quantities.

In the present model, DDRX occurs by nucleation of new grains at sites of sufficient dislocation

density along the grain boundaries. Grain growth proceeds under the competing processes of

stored energy reduction, grain boundary energy minimization and particle drag. PSN is not

included presently since the two events of particle drag and particle stimulated nucleation occur

at different ranges of particle sizes. In the present work, dispersions of relatively small (<< 1 μm)

particles are considered. It can be noted, however, that it is straightforward to incorporate effects

of particle stimulated nucleation in the present modeling framework. In the proposed model,

a cellular automaton model resolving the grain microstructure is employed. With this spatial

resolution, subgrains are not explicitly modeled, nor are the particles which are only present in

a statistical sense. Nucleation of recrystallized grains is also assumed be unaffected by particles

in the model. Formulating the model in this way means that particle/subgrain interaction is not

treated and the effect of particles will be limited to retardation of grain boundary velocity and

influence on the final recrystallized grain size. Studying the influence of particle size and particle

volume fraction on the recrystallized grain size is a main focus of the present work.

The paper begins by establishing the recrystallization kinematics on a microlevel together with

the evolution laws for dislocation density and grain embryo nucleation. The subsequent section

describes the cellular automaton formulation after which model calibration and simulations of

axisymmetric compression at elevated temperatures are shown. The microstructure evolution

under different thermal conditions, and using different initial grain sizes, are studied. This is

followed by a section on the influence of particles on the recrystallization kinetics. A discussion

on the results follows and some concluding remarks closes the paper.

2 Recrystallization kinetics and evolution laws

When a metallic material is deformed through plastic slip, stored energy build-up will occur in

terms of an increased dislocation density. If recovery by dislocation annihilation is slow as in ma-

terials of low stacking-fault energy, grain nuclei may start to form. The nucleation predominantly

occurs along grain boundaries where enough stored energy is present [4, 23, 24]. In combination

with recovery, the microstructure may reach a thermodynamically more favorable state by growth

of new and relatively dislocation-free grains from the nuclei. Following the formulation in [25], the

dislocation density ρ in a single grain is assumed to evolve according to a Kocks-Mecking relation

on the form

ρ̇ = (k1
√
ρ− k2ρ) ε̇

p
eff (1)

where k1,2 are parameters and ε̇peff is the rate of the effective plastic strain. Note that a superposed

dot denotes differentiation with respect to time.

The parameter k1 is expected to be a constant while k2 is generally found to be a function of

temperature and strain rate. As discussed in [26], the parameters k1,2 in eq. (1) can be estimated
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from observations of the macroscopic flow stress behavior. If the second-stage hardening rate and

the saturation flow stress is denoted by θII and σs, respectively, the Kocks-Mecking model results

in

k1 =
2

αb

θII
μ

and k2 = αμb
k1
σs

(2)

where μ is the shear modulus, b the magnitude of the Burgers vector and α a numerical constant.

By eq. (2a), the k1-parameter will exhibit small variations with temperature due to the presence

of the temperature dependent shear modulus μ. One possibility to achieve a constant value of k1

would be to take the mean value. However, since k1 varies only slightly, or is “virtually constant”

as noted in [27], eq. (2a) is presently accepted as an estimate for the parameter k1. This is further

discussed in Section 3, where material parameters for pure Cu are established and a nearly constant

value of k1 is found.

The hardening rate θII can be directly obtained from macroscopic flow stress data and following

e.g. [28], the saturation stress σs can also be determined from experimental data by observing the

proportionality

log

(
σs

μ

)
∝ g (T, ε̇peff) (3)

where the function g is given by

g (T, ε̇peff) =
kBT

μb3
ln

(
ε̇ref
ε̇peff

)
(4)

Here, kB is the Boltzmann constant, T the absolute temperature and ε̇ref a reference strain rate.

If impurities such as second-phase particles are present in the material they will to some extent

influence the evolution of dislocation density by a reduction of the rate of dynamic recovery. As

suggested in [29, 30], this influence could be incorporated into eq. (1) by a scaling of the k2

parameter, depending on the influence of particles. This is, however, not pursued further in the

present model.

The present model considers a constant value of the dislocation density within each grain. This

is a simplifying approach to the inhomogeneous distribution of dislocation density that is to be

expected due to the influence of grain boundaries. Since grain boundaries pose obstacles to dislo-

cation migration, accumulation of dislocations will occur in the vicinity of the grain boundaries.

One method of incorporating this kind of grain boundary-dependent dislocation accumulation in

CA models is introduced in [31]. The approach taken in [31] is based on treating the evolution of

the dislocation density as a reaction-diffusion system with a distinction between mobile and im-

mobile dislocations in conjunction with the immobilization of dislocations occurring at the grain

boundaries.

If the particles are of such size (> 1 μm) that enough lattice curvature is created in their

surrounding, new grains may appear due to particle stimulated nucleation (PSN) in the grain

interiors. However, the present study concerns dispersions of finer particles (<< 1 μm), making

grain boundary nucleation the absolutely dominant nucleation mechanism. PSN is hence not

considered here, although it certainly possible to incorporate it in the present modeling framework.

Nucleation of new grains during dynamic discontinuous recrystallization is commonly accepted

to occur due to instabilities in dislocation structures. Under favorable conditions, individual

subgrains may grow to form recrystallization nuclei. Classically, mesoscale models of dynamic

recrystallization treat the nucleation event by assuming either site-saturated nucleation – where
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all nuclei are present from the start of the simulation – or continuous nucleation – where nuclei are

continuously provided at a constant rate [4]. For computational efficiency, subgrain dislocation

structures are not resolved in the present model and as a simplifying assumption, nucleation is

described by a constant rate of nucleation which, per unit of grain boundary area, is taken as

ṅ = c(T )ε̇peff exp

(
−Qn

RT

)
(5)

where T is the absolute temperature, c(T ) is a temperature dependent parameter, R the gas con-

stant and Qn the activation energy for nucleation. This corresponds to the proportional nucleation

model of [32, 33] which has also been used by e.g. [34, 16, 35]. It should be noted, however, that

the extent of the nucleation is influenced by c(T ) that decreases with increasing temperature. This

yields a temperature dependence of the nucleation rate that is in agreement with what is suggested

in [36]. The influence of c(T ) is discussed further later on, as parameter values for pure copper

are introduced.

The nucleation activation energy in (5) is for simplicity taken as a constant parameter in the

present model whereas this quantity is likely to depend on the state of the microstructure at a

given location, e.g., in terms of the energy stored locally. It can also be noted that the rate of

nucleation in eq. (5) for simplicity is assumed to be unaffected by the presence of particles although

nucleation is likely to be inhibited by particles stabilizing the subgrain structure.

As discussed previously, nucleation predominantly occur along grain boundaries at sites where

sufficient stored energy is present. Following [37], this process is viewed as a bulging of the grain

boundary, locally initiated once a critical dislocation density ρc is reached, also cf. [38]. The critical

dislocation density ρc thus serves as a threshold value for nucleation during the recrystallization

process. The critical dislocation density is further considered in relation to calibration of the model.

It can be noted that the critical dislocation density employed in the present work corresponds to

the often used concept of a macroscopic critical strain and a corresponding macroscopic critical

stress at initiation of recrystallization.

The grain boundary migration velocity is directed along the local grain boundary normal and

the velocity magnitude is given by

v = mp (6)

where m is the grain boundary mobility and p the pressure available to drive the grain boundary

motion. Such recrystallization and grain growth kinetics were addressed already in [39] where

the migration of grain boundaries under the influence of a driving force was studied. The grain

boundary mobility m is in the present model assumed to be a function of the absolute temperature

and the relative grain misorientation. The mobility is by this approach allowed to vary throughout

the microstructure under consideration.

Following the derivation presented in [25], the driving pressure p can – in the absence of Zener

drag – be viewed to consist of two terms pD and pC, related to the jump in dislocation density

across the boundary [ρ] and to the grain boundary energy γ, respectively. These terms appear as

pD = τ [ρ]

pC = −2γ

r

(7)

rendering a driving pressure on the form p = pD + pC. In eq. (7a), the dislocation line energy

is defined as τ = μb2/2 where μ is the shear modulus. The local grain boundary curvature 1/r

DOI: 10.1016/j.commatsci.2013.12.021 5



Computational Materials Science 2014, 84(327-338)

enters the formulation in (7b) and will be discussed later on in relation to establishing the cellular

automaton algorithm.

Impurity atoms not properly fitted in the material microstructure will segregate to the grain

boundaries to achieve better accommodation. The accumulation of impurity atoms will lead

to a lowering of the grain boundary energy, making it increasingly difficult for the boundary

to migrate away from the segregated atoms. Interstitial atoms such as oxygen may cause this

pinning effect, cf. [40]. While high-purity materials can undergo recrystallization at relatively

low temperatures, recrystallization in a lower-purity material may have to be facilitated by raised

process temperatures. The pinning pressure exerted on the boundary due to second-phase particles

may be generally expressed as

pZ = −z1γ0
fz2
v

rp
(8)

where zi are constants and where fv is the volume fraction of particles with radius rp. The interface

energy γ0 enters eq. (8) as a constant parameter since it is not related to the misorientation energy

between particle and matrix material, but is directly related to the local interface energy that is

proportional to the interface curvature. In contrast, the grain boundary energy γ in eq. (7b) will

be allowed to vary with the relative grain misorientation, as is shown later on. In eq. (8), the

interface energy is related to the boundary between the particle inclusion and the surrounding

bulk material. The drag force pZ in eq. (8) may be substantial if the size of the dispersed particles

is small (diameter < 1 μm). The original formulation by Zener [41], perhaps best denoted the

“Smith-Zener formulation” and given by zi = [3/2, 1], is established under the assumption of rigid

grain boundaries. Different remedies to account for the tendency for the grain boundary to bow

out between pinning particles have been proposed. Such a modified formulation of the Zener

drag pressure, where the influence of the volume fraction of solute atoms is emphasized, was put

forward in [42, 43, 44] and is obtained by setting zi = [0.33, 0.87], valid for values of fv below 3%.

In [45], z2 = 1 was arrived at. Including the Zener drag in the expression for the boundary driving

pressure renders the format

p = pD + pC + pZ (9)

The grain boundary energy, γ, first appearing in eq. (7b), is related to the relative misorienta-

tion θ between adjacent grains. As a more general alternative to the Read-Shockley formulation for

the grain boundary energy, which is limited to small misorientation values, we adopt the modified

formulation in [46, 25] which appears as

γ = γ0 sin (2θ) {1− rγ ln [sin (2θ)]} , 0 ≤ θ ≤ 90◦ (10)

where rγ is a constant, specified below along with the interface energy γ0 in relation to calibration

of the model against experimental data. According to [46], the grain boundary energy variation

with misorientation, as described by eq. (10), is in good agreement with grain boundary energy

simulation results for symmetric twist and tilt boundaries in the misorientation range 0 ≤ θ ≤ 90◦.

The orientation of the grains in the microstructure is in the present model described us-

ing the Bunge-Euler angles {ϕ1,Φ, ϕ2}. From these angles a corresponding orientation matrix

R (ϕ1,Φ, ϕ2) may be constructed [47]. Letting R1 and R2 denote the orientations of two adjacent

grains, the orientation difference between them is obtained as ΔR = R2R
T
1 where (·)T denotes the

transpose. In order to obtain a single scalar measure of the misorientation we follow the approach
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in [48, 49, 50] whereby the orientation difference between the two neighboring grains is written as

θ = arccos

[
tr (ΔR)− 1

2

]
(11)

where tr(·) denotes the trace of a matrix. Eq. (11) does not explicitly consider crystallographic

symmetry, but is employed in the present work for simplicity and for computational efficiency.

Turning next to the mobilitym of the grain boundaries, the mobility is taken to depend on both

temperature and relative misorientation between the two adjacent grains. Following [4, 35, 51],

the mobility is taken as

m (T, θ) = m̃0 (T, θ) exp

(
−Qm

RT

)
(12)

where Qm is the activation energy for boundary migration. As suggested in [5], the pre-exponential

term m̃0 is made dependent on the grain misorientation according to

m̃0 (T, θ) = m0 (T )

(
1− exp

[
−B

(
θ

θm

)k
])

(13)

where θm ≈ 15◦ is the misorientation angle, differentiating between low- and high-angle boundaries

and where B and k are parameters, further considered during the calibration of the model later on.

The quantity m0 corresponds to the mobility of high-angle grain boundaries and is proportional

to the inverse of the absolute temperature [4], i.e.

m0 (T ) ∝ 1

T
(14)

The recrystallization process may now be described by nucleation according to (5) and subsequent

growth by (6), with driving pressure and boundary mobility given by (9) and (12).

3 Cellular automaton formulation

A 2D cellular automaton model for simulation of discontinuous dynamic recrystallization in copper

was established in the preceding paper [25]. That model is here reformulated according to the

previous section and is also extended to 3D using Moore neighborhoods and cubic cells. A repre-

sentative volume element (RVE) is constructed as a cube with side length 256 μm. The volume

is discretized using 2563 cubic cells, each with a side length of 1 μm. An initial grain structure

is generated by letting a certain number of randomly placed nuclei grow until they impinge upon

each other, cf. Fig. 1. The morphology of the initial microstructure will resemble a Voronoi con-

struction rather than a physical sample but the simulation is assumed to be relatively unaffected

by this approach. With the size of the RVE fixed, the chosen number of nuclei will dictate the

average grain size of the initial microstructure. Each grain is then given a random initial disloca-

tion density from a normal distribution with mean 1011 m−2 and standard deviation 1010 m−2,

representative for the annealed state [52]. For simplicity, the dislocation density is assumed to be

homogeneously distributed within each grain. The grains, constituting the initial microstructure,

are also given random orientations from a uniform distribution, rendering an initially isotropic

orientation distribution. The initial material to be in an annealed and undeformed state according

to the description in [53]. This suggest the assumption of a random initial texture made in the

present work. Let ξi denote three random numbers from this distribution in the interval [0, 1].

DOI: 10.1016/j.commatsci.2013.12.021 7



Computational Materials Science 2014, 84(327-338)

Figure 1: Initial grain structure of the cellular automaton representative volume element with
dimensions 256× 256× 256 μm. The colors are randomly applied to distinguish between grains.

Following [47, 54], the initial orientations are then obtained from

ϕ1 = 2πξ1

Φ = arccos (1− 2ξ2)

ϕ2 = 2πξ3

(15)

Each cell is assigned state variables, which in the present case consist of the dislocation density,

the three Bunge-Euler angles, an indicator specifying if the cell is recrystallized or not and also an

identifier, stating to which grain the cell belongs. The state of the cells in the cellular automaton

is determined either by evolution laws – e.g. for the dislocation density, cf. eq. (1) – or by

some switching rule which can be deterministic or probabilistic. The latter is considered when

determining to which grain a cell belongs since the grain boundary migration velocities will vary

throughout the analysis domain. To avoid the nonphysical situation where all grain boundaries

are allowed to migrate one cell distance during a common time step, a probabilistic cell state

switch is employed as in [25]. The maximum local grain boundary velocity in the analysis domain

is denoted by vmax which allows definition of the ratio

wgrowth =
v

vmax
where v ≤ vmax (16)

Next, when a cell is approached by a moving grain boundary with velocity v, a random number

ξ ∈ [0, 1] is generated. If ξ ≤ wgrowth, the cell is consumed by the approaching grain, otherwise

it is not. Due to the formulation in eq. (16), a cell in front of the grain boundary moving at the

local velocity vmax will have a switching probability of 1.

A similar probabilistic switching rule is used during the nucleation of new grain embryos, cf.

[25]. The number of new nuclei to appear is determined by eq. (5). All possible nucleation sites

with a dislocation density greater than ρc are considered and the highest dislocation density is
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denoted by ρmax. A dislocation density ratio is defined according to

wnucl =
ρ

ρmax
where ρc ≤ ρ ≤ ρmax (17)

Again a random number ξ ∈ [0, 1] is generated and the current location is accepted as a viable

nucleation site if ξ ≤ wnucl. By this approach, the site with the highest dislocation density, ρmax,

will have a nucleation probability of 1. The sites are checked until all nuclei to appear during the

time step are placed. Consumption of the most dislocation dense sites is also consistent with the

recrystallization striving to efficiently lower the stored energy in the material.

For calculation of the local grain boundary radius r, an extended cell neighborhood is used,

including the first-, second and third-nearest cell neighbors. The radius is obtained by evaluating

r = ar
n+ 1

nk − ni
(18)

where ar is a parameter discussed further later on, n is the total number of neighbor cells, ni is

the number of neighbors within the current neighborhood that belongs to the grain and nk is the

number of neighbor cells belonging to an adjacent grain if it approaches the current cell with a

locally planar boundary for which nk = ni and r → ∞ is obtained. This approximation for the

local boundary curvature has been used previously in [55, 56, 25]. In the present case, n = 342

and nk = 147 are used.

Since the cell grid of the cellular automaton implies a fixed spatial resolution, the cell size puts

an upper limit to the allowable growth distance for a grain boundary in a single time step. The

grain growth kinetics in the algorithm have to be tuned in accord with the chosen spatial resolution.

This can be achieved by considering eqs. (6) and (9). For a given difference in dislocation density

[ρ] and for a given misorientation θ, these equations provide an analytic expression for the grain

boundary velocity, and hence also for the grain boundary radius. Considering a cellular automaton-

formulated RVE with a single grain embedded in a homogeneous matrix, the grain growth kinetics

can be tuned. To this end, let λc denote the growth distance traveled by a migrating grain boundary

with the reference boundary velocity vc during a time increment Δtc, i.e. λc = vcΔtc. A one-grain

simulation is then performed by setting [ρ] = 1× 1015 and θ = 45◦. Remaining parameters are set

as k1 = 379.5 m−1, k2 = 1.3× 10−5, M0 = 0.65× 10−5 m·s−1, ρc = 9.10× 1014 m−2, μ = 30 GPa,

b = 0.256 nm, γ0 = 0.625 J·m−2 and rγ = 0.66. These values correspond to the behavior of pure

copper at a temperature of 725 K. The result of the one-grain simulation is shown in Fig. 2 and

was obtained by choosing Δtc = 0.12 s, vc = 3 μm/s and ar = 0.45 μm. Note that in Fig. 2, the

label “Calculated radius” refers to the grain radius integrated directly using the velocity v = mp

in eq. (6) with p = pD+pC according to eq. (8) together with the time incrementation of a cellular

automaton run. The label “Grid-based radius” in Fig. 2 refers to the radius obtained from a grain

growing in the cellular automaton cell grid during the same simulation. The radii shown in Fig. 2

are thus obtained using a non-constant growth velocity. In a poly-crystal simulation, the time

step Δt in the cellular automaton can now be obtained by a scaling of the maximum current grain

boundary velocity vmax according to Δt = λc/vmax.

Next, considering a polycrystalline RVE, it is noted that the strain rate independent macro-

scopic flow stress according to e.g. [26] relates to the average dislocation density ρ̄ according

to

σ̂ = αμb
√
ρ̄ (19)

where α is a parameter related to the dislocation interaction strength [62].
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Figure 2: Growth rate of a grain obtained by direct calculation (solid line) and obtained using
a cellular automaton simulation (dashed line). The cellular automaton grain is shown at four
different growth stages in pictures (a)-(d) to the right.

Table 1: Material parameters entering the present model. The values pertain to copper.

Parameter Value Description Used in eq. Source

Tm 1356 K Melting temperature (20) [57]
θII 1.1 × 109 Pa Second-stage hardening rate (2) [36]

ε̇pref 1 × 107 s−1 Reference strain rate (4) [28]

ε̇p0 4.5 × 10−7 s−1 Reference strain rate (23) [58]
m 0.0222 Strain rate sensitivity exponent (23) [58]

γ0 0.625 J·m−2 Grain boundary energy (10) [4]
rγ 0.66 Grain boundary energy parameter (10) [59]
α 0.35 Dislocation interaction strength parameter (2), (19) [36]

Qm 126 kJ·mol−1 Activation energy for grain boundary migration (12) [60]
θm 15◦ Angle at shift from LAGB to HAGB (13) [4]
b 0.256 nm Magnitude of the Burgers vector (2), (4), (19) [61]

Qn 261 kJ·mol−1 Activation energy for nucleation (5) [53]
B 5 Parameter in the mobility misorientation dependence (13) [5]
k 4 Parameter in the mobility misorientation dependence (13) [5]
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The temperature dependence of the shear modulus is, following [63], taken as

μ (T ) = 35.4× 109
[
1− 0.5

(
T − 300

Tm

)]
Pa (20)

where Tm = 1356 K is the melting temperature for pure copper. The average dislocation density

is obtained by considering a homogenization of the plastic work power, denoted by ẇp, i.e.

ẇp = σ̂ε̇peff =
1

V

∑
i

∫
Vi

ẇp
i dV =

1

V

∑
i

∫
Vi

σ̂iε̇
p
eff,idV (21)

Here a subscript i indicates quantities related to grain i and the total volume of the RVE is denoted

by V . Using σ̂i = αμb
√
ρi and ε̇peff = ε̇peff,i results in

√
ρ̄ =

1

V

∑
i

∫
Vi

√
ρidV (22)

Note that in eqs. (21) and (22), the summations are performed over all grains.

For simplicity, a Taylor assumption is employed in the present homogenization scheme, whereby

ε̇peff = ε̇peff,i is assumed as the elastic strains are negligible. It can be noted that alternative formu-

lations exist, such as the iso-work assumption suggested in [64]. A more rigorous homogenization

procedure would be to consider a multilevel formulation, where the macroscopic deformation is

enforced as a periodic boundary condition on the microlevel RVE. However, the Taylor assumption

is frequently employed in crystal plasticity models of polycrystal plasticity and was also used in a

mean field model of dynamic discontinuous recrystallization in [51].

Following e.g. [26], the dependence of the macroscopic flow stress on strain rate is introduced

by considering eq. (19) and formulating

σ = σ̂

(
ε̇peff
ε̇0

)m

(23)

where m is a strain rate sensitivity parameter and ε̇0 a reference strain rate, different from ε̇ref in

eq. (4)

For the saturation stress, σs, eqs. (3) and (4) are fitted to experimental data on pure copper

in [36], giving

log

(
σs

μ

)
= −2.271g − 1.654. (24)

In addition, the second-stage hardening rate is in [36] determined as θII = 1.1 × 109 Pa. It can

be noted that in [36], the values of σs and θII are based on experimental data from a limited

temperature interval and the precision at very high temperatures must be treated with some

caution.

Material parameters for pure copper are summarized in Table 1.

From eq. (2a) the parameter k1, related to the athermal accumulation of dislocations, can be

estimated from the relation k1 = 2 (θII/μ) (αb)
−1, cf. [26]. Due to the shear modulus μ being

temperature dependent according to eq. (20), a slight variation in the ratio θII/μ is observed as

the temperature is varied. However, following [27], eq. (2a) is accepted as an estimate of the

k1-parameter as the variations are small. Choosing values of θII, b and α according to Table 1 and

with μ calculated from eq. (20), the value of k1 will vary from 5.8 × 108 m−1 at T = 725 K to

6.8× 108 m−1 at T = 1075 K. As noted previously, the experimental data at T = 1075 K should
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Table 2: Temperature dependencies of the critical dislocation density ρc, the nucleation parameter
c and the mobility parameter m0.

T [K] ρc [m−2] m0 [m·s−1] c [m−3]

725 5.70 × 1014 1.32 × 10−5 6 × 1024

775 3.70 × 1014 1.1 × 10−5 4 × 1023

875 1.46 × 1014 0.72 × 10−5 7 × 1020

975 5.30 × 1013 0.32 × 10−5 3 × 1019

1075 1.72 × 1013 0.23 × 10−5 7 × 1017
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Figure 3: Flow stress behavior at five different temperatures. Experimental results, taken from
[53] are shown by circles and simulation results from the present work are shown by solid lines. In
both simulations and experiments, the initial grain size was d0 = 78 μm.
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be read with some caution. For the reduced temperature range 725 − 975 K, the value of the

k1-parameter varies between 5.8× 108 m−1 and 6.5× 108 m−1.

By setting the temperature dependent parameters related to the critical dislocation density

for nucleation, boundary mobility and rate of nucleation according to Table 2, the macroscopic

flow stress behavior in Fig. 3 is obtained. The effective plastic strain rate is in the simulations

kept constant at ε̇eff = 2 × 10−3 s−1. Regarding the mobility parameter m0 in Table 2, it can be

noted that this quantity decreases with increasing temperature, in agreement with eq. (14). Also,

the decreasing values of the nucleation parameter c with increasing temperature can be noted.

This temperature dependence gives a nucleation rate that corresponds to the observations made

in [36]. The simulation results in Fig. 3 are shown together with experimental data taken from

[53]. In accordance with the experimental results, the simulated recrystallization proceeds more

rapidly as the temperature is increased. This results in oscillatory flow stress behavior at higher

temperatures, which is evident from Fig. 3. At lower temperatures, each recrystallization cycle is

allowed to finish before the next one sets in, resulting in a more stable flow stress behavior. In

contrast, at higher temperatures, new cycles of recrystallization are initiated before the preceding

have completed. This causes the flow stress serrations seen in Fig. 3.

Nearly all aspects of the modeled material behavior are defined by the constants that are

summarized in Table 1. However, in order to verify that the proposed model is able to capture

the macroscopic flow stress behavior of pure Cu a separate set of experimental data, taken from

[53], is also considered to provide the experimental flow stress curves in Fig. 3.

Having defined the material behavior by the constants in Table 1, only the three parameters

ρc, m0 and c are left to permit adjustment of the modeled material behavior to comply with the

experimental flow stress data in [53]. These three parameters are taken as constants at a given

temperature and are summarized in Table 2. The values of these parameters are found by fitting

the macroscopic flow stress, obtained from the model, to the experimental flow stress data at

each temperature. In addition, the three parameters are identified such that the final average

grain size obtained in the simulations corresponds to the experimentally identified value at each

temperature.

The modeled flow stress curves in Fig. 3 are found to be higher than the experimental values at

some temperatures and lower at other. Part of the explanation for this is the identification of the

three parameters in Table 2 but the main cause is the temperature dependence of the saturation

flow stress σs in eqs. (3) and (4) that follows from the material constants in Table 1. Small

differences in metal purity and variations in the experimental procedures cause some deviations

between the experimental data in Table 1 and the experimental flow stress curves in Fig. 3, which

are by purpose taken from a different source to allow some degree of verification of the model.

With the initial microstructure shown in Fig. 1, the grain structures obtained after simulated

axisymmetric hot compression at different temperatures are shown in Fig. 4. These microstructures

correspond to the flow stresses in Fig. 3. It can be noted that at the highest temperature of 1075 K,

the microstructure evolution actually results in grain coarsening, as opposed to the grain refinement

at lower temperatures. This observation is in line with the experimental data in [53]. Fig. 4 also

shows the resulting average grain size df , obtained for a strain of εpeff = 1 at each temperature.

The saturation grain sizes obtained from the simulations are in good agreement with the grain

sizes that were measured in [53], stated in Fig. 4 within parentheses.

Letting X denote the volume fraction of recrystallized material, the recrystallization kinetics

are commonly described by Kolmogorov/Johnson/Mehl/Avrami (KJMA) theory by employing the
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a) T = 725 K

df = 7.9 μm (9.8 μm)

b) T = 775 K

df = 11.3 μm (14 μm)

c) T = 875 K

df = 35.0 μm (34 μm)

d) T = 975 K

df = 44.9 μm (57 μm)

e) T = 1075 K

df = 82.7 μm (90 μm)

Figure 4: Resulting microstructure at 100 % strain at five different temperatures. In all cases, the
initial grain size was d0 = 78 μm. The final average grain sizes, obtained from the simulations, are
denoted by df . The final grain size, observed in experiments according to [53], are stated within
parentheses at each temperature.
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Figure 5: Recrystallization kinetics represented by the volume fraction of recrystallized material,
denoted by X , as function of time, t, at five different temperatures. Solid lines show simula-
tion results and dashed lines show the KJMA relation fitted to the simulation results at each
temperature. Note that the plots at T = 775 K, T = 875 K and T = 975 K nearly coincide.

Table 3: Fitted KJMA parameters.

T [K] nx Bx

725 2.5 1.1 × 10−5

775 3.3 7.2 × 10−7

875 4.5 7.6 × 10−8

975 5.1 1.4 × 10−8

1075 4.3 6.7 × 10−8

relation

X = 1− exp (−Bxt
nx) (25)

where t is the time, Bx is a coefficient and nx the Avrami exponent [65, 66, 67]. In Fig. 5a, the

volume fraction of recrystallized material is plotted with solid lines. The KJMA equation (25),

fitted by a least-squares procedure, is drawn with dashed lines at each temperature. The fitted

KJMA parameters are shown in Table 3.

The KJMA model in eq. (25) was established under the assumption of site-saturated and

homogeneous nucleation along with constant grain boundary velocities. As experimental results

are considered, where both heterogeneous nucleation and non-constant migration velocities are

encountered, deviations from the linear KJMA relation, cf. Fig 5b, inevitably occur. These

deviations are accentuated during the initial stages of recrystallization where the assumption of

site-saturated nucleation is least applicable and during the final stages where growing recrystallized

grains to a large extent have consumed the possible nucleation sites in the microstructure. In the

case of a constant nucleation rate, presently under consideration, experimental results indicate an

Avrami exponent of nx = 4 to be expected whereas nx = 3 applies to site-saturated nucleation

[4]. Considering the nucleation parameter c, cf. Table 2, it can be noted that going down in

temperature the value of c increases, with the exception of the highest temperature T = 1075 K.

A high value of c will result in all possible nucleation sites of the current microstructure being

populated by nuclei, i.e. a situation of site-saturated nucleation. The reversed trend is encountered
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Figure 6: Influence of initial grain size on the flow stress behavior at T = 775 K. (a) Simulation
results with four different initial grain sizes: d0 = 100, 78, 15 and 10 μm. (b) Experimental results
at the same temperature, taken from [53], showing the transition with decreasing initial grain size
from single-peak flow at d0 = 78 μm to oscillating flow at d0 = 15 and 10 μm.

as the temperature is increased. This behavior is clearly shown in Fig. 5, where the slope of the

KJMA function (dashed lines) changes from nx ≈ 2.5 at T = 725 K to nx ≈ 5.1 at T = 975 K, in

qualitative agreement with KJMA theory.

As noted previously, the simulation results obtained at T = 1075 K should be interpreted

cautiously. Values of the second-stage hardening rate θII and the saturation stress σs were defined

in Section 3. As mentioned there, these parameter values were obtained from experimental data in

a temperature interval not quite spanning the temperatures considered in Figs. 3 and 5. This is a

probable cause for some of the deviations between the simulated macroscopic flow stress behavior

and the experimental data in Fig. 3. In addition, following the study on dynamic recrystallization

in copper single crystals in [68], it can be expected that the recrystallization behavior changes at

a temperature of approximately 0.75Tm ≈ 1020 K which results in a different nucleation behavior

that at lower temperatures. This condition also separates the results at T = 1075 K in Figs. 3

and 5 from those obtained at lower temperatures.

It can also be noted that the original KJMA model has been reformulated and elaborated in

numerous publications, e.g. [69, 70], but for simplicity the original formulation is employed in the

present study.

The initial average grain size will influence the flow stress characteristics during recrystalliza-

tion. This is shown in Fig. 6 at T = 775 K. Fig. 6a shows the simulated flow stress behavior and

Fig. 6b experimental results from [53]. If the initial grain size is decreased, the volume fraction

of grain boundaries, and hence the number of possible nucleation sites in the microstructure, in-

creases. This permits repeated and simultaneous cycles of recrystallization to take place, resulting

in an oscillatory flow stress behavior. In contrast, if larger initial grain sizes are considered, the

number of possible nucleation sites are reduced which slows down the recrystallization process and

stabilizes the flow stress behavior.

3.1 Parallel implementation of the cellular automata algorithm

One of the benefits of working with cellular automaton algorithms is their suitability for computer

parallelization. Since the state of each cellular automaton cell is based solely on the previous state

of the cell and the states of the nearest cell neighbors, information between cells only have to be

communicated locally. This allows the updating scheme for the computational domain to be split
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Figure 7: Influence on recrystallization from a homogeneous distribution of small impurity particles
at T = 725 K and T = 775 K. The particles are of radius rp (in μm) and are present by a volume
fraction fv. The rate of recrystallization is seen to decrease due to Zener pinning and more so for
smaller particles.

into parallel processes.

In the present model, the domain is discretized into 2563 ≈ 16, 800, 000 cells and for simplicity

an OpenMP parallelization is employed. Using OpenMP, the parallel processors need to be con-

nected to a shared memory in contrast to parallelization by using message passing interfaces, MPI.

The latter approach would allow splitting of the computational effort between arbitrary numbers

of processors while OpenMP limits the parallel execution to be performed on a single computer

or cluster node.

Using four processor cores on a standard desktop computer, the present OpenMP implementa-

tion results in execution times of approximately six to eight hours for performing a full simulation

run at a single temperature. The four cores reside on a processor of type “Intel Xeon W3520”,

working at 2.67 GHz.

Despite the large number of cells, which provides a substantial spatial resolution in the model,

the required execution time is thus limited. In addition, the benefit of parallel execution increases

with the number of processors being employed, allowing the computational time to be further

reduced if additional processors were to be used. Even more speed-up could be expected if MPI

parallelization would be employed with a larger number of parallel processors.

4 Influence of impurity particles

So far a pure copper material has been considered. In practical applications, however, a certain

volume fraction of impurities is present in the material. These particles may indeed be impurities

but can also be particles deliberately added in order to exert control over the grain size in the

material during thermomechanical processing. Such tailoring of the material microstructure is

becoming increasingly important in many industrial processes and for a wide range of metals and

alloys including structural steels and materials such as aluminum and copper of higher purity.

Being able to control the grain size in the material allows customization of several aspects of the

material behavior. Important properties such as strength, ductility, fatigue life as well as wear

and corrosion resistance depend on the microstructure grain size. The presence of impurities and

added particles in the material will influence the recrystallization kinetics and the final grain size
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both due to retardation of migrating grain boundaries through Zener pinning, cf. eq. (8), and

due to particle stimulated nucleation. Considering relatively small particles of diameter less than

1 μm, the dominating mechanism will be Zener pinning [71, 4].

Fig. 7 shows how the simulated recrystallization process is retarded in the presence of impurity

particles at the temperatures T = 725 K and T = 775 K. It is clearly seen from Fig. 7 how smaller

particles more efficiently retards recrystallization compared to larger particles, in agreement with

eq. (8). To obtain the plots in Fig. 7, the original Zener parameters zi = [3/2, 1] were used.

Recalling eq. (8), it can be noted that the so-called particle dispersion level, i.e. the ratio fv/rp,

enters as an important parameter. This quantity is a characteristic descriptor of the influence of

impurities on the recrystallization behavior. Following [4], the recrystallization process is different

within different ranges of fv/rp. For low values of fv/rp, the final average grain size is limited

by grain growth, i.e. by the availability of nucleation sites in the microstructure. For some

intermediate values of fv/rp, a minimum grain size is obtained during processing at elevated

temperatures. This may not be a distinct minimum due to heterogeneous particle distribution and

local variations. Instead, the minimum recrystallized grain size can be observed over an interval of

particle dispersion levels. The grain evolution in this transition regime where the driving pressure is

balanced by the particle drag pressure, acting on the grain boundaries, is referred to as“percolation

recrystallization” in [19]. Finally, for larger values of fv/rp, the influence of Zener pinning is such

that recrystallization is increasingly restricted until the point where recrystallization no longer

occurs. The values of fv/rp which minimize the final grain size then appears as important input

in the design of customized fine-grained materials. Regarding the particle dispersion level fv/rp,

it can be noted that this measure should be used with caution if the parameter z2 	= 1, cf. eq. (8).

Fig. 8 shows how the final grain size at different temperatures varies with the particle dispersion

level. The particle size is kept constant at rp = 0.1 μm while the volume fraction fv is varied. The

final grain sizes on the vertical axes are normalized by the final grain size at each temperature,

obtained for the pure copper material, i.e. with fv = 0. The symbols in the plots in Fig. 8 show

simulation results for different values of the particle dispersion level and the solid lines are cubic

splines, drawn through the data points just in order to indicate the trends in the data. The plots

in Fig. 8 are obtained using the original parameter set zi = [3/2, 1]. The existence of an optimum

particle dispersion level fv/rp that minimizes the final grain size, as discussed previously, is evident

in Fig. 8 where the final grain size reaches a minimum at each of the temperatures. This minimum

is, however, found over an interval of particle dispersion levels at some of the temperatures. This

is especially true for the lower temperatures of T = 725 K and T = 775 K in Figs. 8a and 8b.

As the temperature is increased, these minima tend to occur for smaller values of the particle

dispersion level, i.e. for larger particles if fv is kept constant or alternatively for smaller particle

volume fractions if rp is kept constant. Noting the temperature dependence of the grain boundary

mobility parameter m0 in Table 2, it is seen that the mobility is lowered as the temperature

is increased. Since the grain boundary velocity is given by v = mp according to eq. (6), the

progression of recrystallization will be more efficiently retarded by Zener pinning, i.e. by lower

magnitudes of the driving pressure p, as the temperature is increased. This explains the shift of

the minima in the plots in Fig. 8 towards lower values of fv/rp as increased temperatures are

considered.

The minimum values of the final, normalized, grain sizes are shown in Table 4 along with the

approximate values of the particle dispersion level at which the minimum values occur. Table 4

shows the normalized final grain size, as in Fig. 8, i.e. the final grain size is normalized using the

final grain size in the absence of impurity particles. The grain size values in Table 4 thus show the
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Figure 8: Influence on recrystallization from a homogeneous distribution of small impurity par-
ticles. Final grain size (normalized) after recrystallization as function of the particle dispersion
level fv/rp for a fixed particle size of rp = 0.1 μm. Results are shown at different temperatures.
The circles show the actual simulation results while the solid lines are cubic spline interpolations,
included simply to indicate the trends in the results. Note that the intervals on the axes differ
between the figures.
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Table 4: Approximate particle dispersion levels fv/rp resulting in minimum final, normalized,
grain size at different temperatures, cf. Fig. 8. Note that the values are indicative rather than
absolute.

T [K] fv/rp [(μm)−1] df/df(fv = 0)

725 0.12 0.95
775 0.3 0.55
875 0.11 0.45
975 0.035 0.45
1075 0.006 0.4
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Figure 9: Effects on the flow stress at T = 875 K from increasing the particle dispersion level
fv/rp, with rp = 0.1 μm. Also cf. Fig. 8c.

relative reduction in final grain size that can be obtained for the particle dispersion levels stated

at each temperature. It can be noted that the final grain size can be reduced by approximately

50-60 % if controlled amounts of particles are added to the initially pure copper material.

Fig. 9 shows how the simulated flow stress behavior at T = 875 K is influenced by different

values of the particle dispersion level fv/rp. Comparing Fig. 8c with Fig. 9, it can be noted that

as the particle dispersion level approaches a value of approximately 0.1, the flow stress behavior

is more or less unaffected by the recrystallization. The initial flow stress peak and the subsequent

oscillations are replaced by a flow stress that saturates at a constant level as predicted by the

material hardening, i.e. the dislocation density evolution law in eq. (1). The vanishing flow stress

oscillations correspond to the final grain size reaching its minimum value, as seen in Fig. 8c.

If the original set of Zener parameters zi = [3/2, 1] are replaced by the modified set zi =

[0.33, 0.87], the approximation of rigid grain boundaries in the original Zener formulation is relaxed

[42, 43, 44]. This modification accounts for the tendency of the grain boundaries to bow out

between pinning particles. Since the parameter values, and most predominantly so the value of z1,

are lower in the modified set, the retarding pressure on the boundaries due to particles will be less

than in the original parameter set by Zener [41]. This will result in the recrystallization kinetics

being less retarded by the modified parameter set zi = [0.33, 0.87] as compared to the original

values zi = [3/2, 1]. This is evident from Fig. 10 where the recrystallized volume fraction is shown

as a function of time for fv = 0.05 and rp = 0.2 μm. The plots show the behavior at different

temperatures in the absence of particles, i.e. z1 = 0, with the original parameter set zi = [3/2, 1]
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Figure 10: Effect of particle drag on the recrystallization kinetics using the modified Zener pa-
rameters zi = [0.33, 0.87] (dashed lines) compared to the original parameter set zi = [3/2, 1]
(dash-dotted lines). For comparison also the behavior in the absence of particles is included (solid
lines). The results are shown at different temperatures with fv = 0.05 and rp = 0.2 μm.

and with the modified set zi = [0.33, 0.87].

5 Concluding remarks

A micromechanical model for dynamic recrystallization, including particle drag, is established.

The model is employed in a 3D cellular automaton algorithm with model parameters pertaining

to pure copper. This allows studies of the microstructure evolution in a representative volume

element exposed to deformation at elevated temperatures to be performed. In addition, homog-

enization of the dislocation density in the representative volume element also makes macroscopic

properties, such as the flow stress behavior, available. The macroscopic flow stress obtained from

the simulations correspond well to experimental data taken from the literature. As increased

temperatures are considered, the expected transition from single/peak, relatively stable flow, into

serrated multiple-peak flow is captured in the simulations. The microstructure evolution in terms

of average grain size is also in agreement with experiments. In addition, the influence of changed

initial average grain size is studied. In accordance with experimental data, a reduced initial grain

size results in increasingly oscillatory flow stress behavior whereas an increased initial grain size

stabilizes it.

To further verify the simulation results, comparisons are made with classical Kolmogorov-

/Johnson/Mehl/Avrami (KJMA) theory. The expected change in the value of the Avrami expo-

nent is found as conditions resembling site/saturated nucleation at lower temperatures gradually

changes into conditions of continuous nucleation at higher temperatures. Introducing impurity

particles into the material influences the recrystallization kinetics by reducing, or even pinning,

mobile grain boundaries. The changed recrystallization kinetics at different temperatures and us-

ing different particle sizes are studied. As expected, the progression of recrystallization is retarded

by the presence of impurities and this effect is more pronounced as smaller particles are considered.

Control of the grain size using deliberately added particles is an important industrial applica-

tion, allowing tailoring of material properties. By changing the particle dispersion level, i.e. the
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volume fraction of particles and/or the typical particle size, optimum processing conditions can be

identified. For certain intervals of the particle dispersion level, the final grain size can be reduced

by 50-60 %, depending on processing temperature.

The proposed model provides a versatile tool for analysis of microstructure evolution and

related control of material properties. By use of a cellular automaton formulation, excellent

computational efficiency together with high spatial and temporal resolution of the microstructure

changes is obtained.
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