# Production of very fine grained materials

Since recrystallization is driven by reduction of stored energy, the amount of cold work influences the grain size evolution. Materials with grain sizes down to the nanometer scale can be obtained by exposing the material to severe plastic deformation (SPD). Such SPD processes include Equal Channel Angular Pressing/Extrusion (ECAP/ECAE), Asymmetric Rolling (ASR), Multi-Directional Forging (MDF), High-Pressure Torsion (HPT) and Twist Extrusion (TE). Some of these processes are discussed further below.

During ECAP, studied in Hallberg et al. (2010), the material specimen is pressed through a channel die as illustrated below.

The amount of effective plastic deformation, denoted by $\displaystyle \varepsilon_{\mathrm{eff}}^{\mathrm{p}}$, that is imposed onto the specimen in each pass can be estimated from knowledge of the die geometry according to

$\displaystyle \varepsilon_{\mathrm{eff}}^{\mathrm{p}}=\frac{N_{\mathrm{pass}}}{\sqrt{3}}\left[2\mathrm{cot}\left(\frac{\Phi}{2}+\frac{\Psi}{2}\right)+\Psi\mathrm{cosec}\left(\frac{\Phi}{2}+\frac{\Psi}{2}\right)\right]$

Varying the channel geometry thus allows control of the amount of plastic deformation that is exerted onto the specimen in each pass through the die. If the specimen is rotated between each pass through the die, different standardized processing routes can be obtained.

Another SPD process is asymmetric rolling, discussed in Hallberg (2013), where a conventional rolling process can be made asymmetric by different methods.

The asymmetry of the process can be induced by having different radii $r$ of the rolls, by different roller velocities, i.e. $\omega_{1}\ne\omega_{2}$ or by different friction/lubrication conditions at each side of the sheet. The asymmetry increases the shear deformation of the rolled sheet and hence the total amount of effective plastic deformation.