About

I work at the Division of Solid Mechanics at Lund University in Sweden. Additional information can be found on our university web pages.

Selected publications

  1. B. Starman, H. Hallberg, M. Wallin, M. Ristinmaa and M. Halilovic (2020), Differences in phase transformation in laser peened and shot peened 304 austenitic steel, International Journal of Mechanical Sciences, vol. 176, id. 105535.
  2. H. Hallberg, A. Chamanfar and Nicholas E. Nanninga (2020), A constitutive model for the flow stress behavior and microstructure evolution in aluminum alloys under hot working conditions - with application to AA6099, Applied Mathematical Modelling, vol. 81C, pp. 253-262. Supplementary material.
  3. Y. Zhu, H. Qiu and H. Hallberg, (2020), Phase field modelling allotropic transformation of solid solution, Computers Materials and Continua, vol. 62, nr. 3, pp. 1289-1302.
  4. S. Pettersson, J. Engqvist, S. Hall, N. Toft and H. Hallberg (2019), Peel testing of a packaging material laminate studied by in-situ X-ray tomography and cohesive zone modeling, International Journal of Adhesion and Adhesives, vol. 95, pp. 102428.
  5. A. Ericsson, M. Fisk and H. Hallberg (2019), Modeling of nucleation and growth in glass-forming alloys using a combination of classical and phase-field theory, Computational Materials Science, vol. 165, pp. 167-179.
  6. H. Hallberg and V.V. Bulatov (2019), Modeling of grain growth under fully anisotropic grain boundary energy, Modelling and Simulation in Materials Science and Engineering, vol. 27, nr. 4, id. 045002
  7. S. Issa, M. Wallin, M. Ristinmaa and H. Hallberg (2018), Diagonally Implicit Runge-Kutta (DIRK) integration applied to finite strain crystal plasticity modeling, Computational Mechanics, vol. 62, pp. 1429–1441.
  8. H. Hallberg, S. Kyrre Ås and B. Skallerud (2018), Crystal plasticity modeling of microstructure influence on fatigue crack initiation in extruded Al6082-T6 with surface irregularities, International Journal of Fatigue, vol. 111, pp. 16-32.
  9. S. Issa, S. Eliasson, A. Lundberg, M. Wallin and H. Hallberg (2018), Cohesive zone modeling of crack propagation influenced by martensitic phase transformation, Materials Science and Engineering A, vol. 712, pp. 564-573.
  10. J. Hektor, J.-B. Marijon, M. Ristinmaa, S. Hall, H. Hallberg, S. Iyengar, J.-S. Micha, O. Robach, F. Grennerat and O. Castelnau (2018), Evidence of 3D strain gradients associated with tin whisker growth, Scripta Materialia, vol. 144, pp. 1-4.
  11. A. Ericsson, M. Fisk and H. Hallberg (2017), Phase-field model for microstructural evolution during metallic glass formation, Simulation for Additive Manufacturing 2017, Sinam, CIMNE, vol. 2017-October, pp. 116-117.
  12. Y. Mellbin, H. Hallberg and M. Ristinmaa (2017), An extended vertex and crystal plasticity framework for efficient multiscale modeling of polycrystalline materials, International Journal of Solids and Structures, vol. 125, pp. 150-160.
  13. H. Hallberg, F. Adamski, S. Baïz and O. Castelnau (2017), Microstructure and property modifications of cold rolled IF steel by local laser annealing, Metallurgical and Materials Transactions A, vol. 48, nr. 10, pp. 4786–4802.
  14. Y. Mellbin, H. Hallberg and M. Ristinmaa (2016), Recrystallization and texture evolution during hot rolling of copper, studied by a multiscale model combining crystal plasticity and vertex models, Modelling and Simulation in Materials Science and Engineering, vol. 24, nr. 7, id. 075004.
  15. M. Halilovic, S. Issa, M. Wallin, H. Hallberg and M. Ristinmaa (2016), Prediction of the residual state in 304 austenitic steel after laser shock peening - effects of plastic deformation and martensitic phase transformation, International Journal of Mechanical Sciences, vol. 111-112, pp. 24-34.
  16. H. Hallberg and P. Olsson (2016), Investigation of microstructure evolution during self-annealing in thin Cu films by combining mesoscale level set and ab-initio modeling, Journal of the Mechanics and Physics of Solids, vol. 90, pp. 160-178.
  17. J. Hektor, M. Ristinmaa, H. Hallberg, S. Hall and S. Iyengar (2016), Coupled diffusion-deformation multiphase field model for elastoplastic materials applied to the growth of Cu6Sn5, Acta Materialia, vol. 108, pp. 98-109.
  18. Y. Zhu and H. Hallberg (2015), Investigation of faceted void morphologies in UO2 by phase field modelling, Journal of Nuclear Materials, vol. 467, pp. 113-120.
  19. H. Hallberg and Y. Zhu (2015), Stability of grain boundary texture during isothermal grain growth in UO2 considering anisotropic grain boundary properties, Journal of Nuclear Materials, vol. 465, pp. 664-673.
  20. Y. Mellbin, H. Hallberg and M. Ristinmaa (2015), A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations, Modelling and Simulation in Materials Science and Engineering, vol. 23, nr. 4, id. 045011
  21. H. Hallberg (2014), Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth - A 2D level set study, Modelling and Simulation in Materials Science and Engineering, vol. 22, nr. 8, id. 085005.
  22. Y. Mellbin, H. Hallberg and M. Ristinmaa (2014), Accelerating crystal plasticity simulations using GPU multiprocessors, International Journal for Numerical Methods in Engineering, vol. 100, nr. 2, pp. 111-135.
  23. H. Hallberg, B. Svendsen, T. Kayser and M. Ristinmaa (2014), Microstructure evolution during dynamic recrystallization in particle-containing Cu, Computational Materials Science, vol. 84, pp. 327-338.
  24. H. Hallberg (2013), A modified level set approach to 2D modeling of dynamic recrystallization, Modelling and Simulation in Materials Science and Engineering, vol. 21, nr. 8, id. 085012.
  25. H. Hallberg (2013), Influence of process parameters on grain refinement in AA1050 Aluminum during cold rolling, International Journal of Mechanical Sciences, vol. 66C, pp. 260-272.
  26. H. Hallberg and M. Ristinmaa (2013), Microstructure evolution influenced by dislocation density gradients modeled in a reaction-diffusion system, Computational Materials Science, vol. 67, pp. 373-383.
  27. H. Hallberg (2012), A note on the Kelvin effect in 100Cr6 steel with application to identification of the elastoplastic limit, ISRN Thermodynamics, vol. 2012, id. 106051, pp. 1-4.
  28. H. Hallberg, L. Banks-Sills and M. Ristinmaa (2012), Crack tip transformation zones in austenitic stainless steel, Engineering Fracture Mechanics, vol. 79, pp. 266-280.
  29. H. Hallberg (2011), Approaches to modeling of recrystallization, Metals, special issue: Processing and Properties of Bulk Nanostructured Materials, vol. 1, nr. 1, pp. 16-48.
  30. H. Hallberg and M. Ristinmaa (2011), Modeling of crack behavior in austenitic stainless steel influenced by martensitic phase transformation, Key Engineering Materials, vol. 452-453, pp. 637-640.
  31. H. Hallberg, M. Wallin and M. Ristinmaa (2010), Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton, Computational Materials Science, vol. 49, pp. 25-34.
  32. H. Hallberg, P. Håkansson and M. Ristinmaa (2010), Thermo-mechanically coupled model of diffusionless phase transformation in austenitic steel, International Journal of Solids and Structures, vol. 47, nr. 11-12, pp. 1580-1591.
  33. H. Hallberg, M. Wallin and M. Ristinmaa (2010), Modeling of continuous dynamic recrystallization in commercial-purity aluminum, Materials Science and Engineering A, vol. 527, pp. 1126-1134.
  34. H. Hallberg, K. Ryttberg and M. Ristinmaa (2009), Model describing material-dependent deformation behavior in high velocity metal forming processes, ASCE Journal of Engineering Mechanics 2009, vol. 135, nr. 4, pp. 345-357.
  35. H. Hallberg, P. Håkansson and M. Ristinmaa (2007), A constitutive model for the formation of martensite in austenitic steels under large strain plasticity, International Journal of Plasticity, vol. 23, nr. 7, pp. 1213-1239.