Continuum scale modeling of recrystallization

Adopting a continuum mechanical approach, recrystallization can be modeled using an internal variable representation of the pertaining quantities, such as the average grain size and the dislocation density. The macro-scale material behavior will in this way be based on parameters related to the evolving microstructure.

An example of continuum-scale modeling and simulation of ECAP-processing of Aluminum is given in Hallberg et al. (2010). Some results on the distributions of grain size and dislocation density in the work piece are shown in the figures below.

Results from simulations of ECAP-processing. The top figure shows the distribution of average grain size after and two ECAP-passes, respectively. The bottom figure shows the distribution of normalized dislocation density, also after one and two ECAP-passes, respectively. Note that after two passes, both grain size and dislocation density remain at relatively constant levels all through the specimen along the indicated lines.

Results from simulations of ECAP-processing. The top figure shows the distribution of average grain size after and two ECAP-passes, respectively. The bottom figure shows the distribution of normalized dislocation density, also after one and two ECAP-passes, respectively. Note that after two passes, both grain size and dislocation density remain at relatively constant levels all through the specimen along the indicated lines.
Results from simulations of ECAP-processing. The top figure shows the distribution of average grain size after and two ECAP-passes, respectively. The bottom figure shows the distribution of normalized dislocation density, also after one and two ECAP-passes, respectively. Note that after two passes, both grain size and dislocation density remain at relatively constant levels all through the specimen along the indicated lines.